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Chapter 1
Vector Spaces

Linear algebra is the study of linear maps on finite-dimensional vector spaces.
Eventually we will learn what all these terms mean. In this chapter we will define
vector spaces and discuss their elementary properties.

In linear algebra, better theorems and more insight emerge if complex numbers
are investigated along with real numbers. Thus we will begin by introducing the
complex numbers and their basic properties.

We will generalize the examples of a plane and of ordinary space to R" and
C”, which we then will generalize to the notion of a vector space. As we will see,
a vector space is a set with operations of addition and scalar multiplication that
satisfy natural algebraic properties.

Then our next topic will be subspaces, which play a role for vector spaces
analogous to the role played by subsets for sets. Finally, we will look at sums
of subspaces (analogous to unions of subsets) and direct sums of subspaces
(analogous to unions of disjoint sets).
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René Descartes explaining his work to Queen Christina of Sweden.
Vector spaces are a generalization of the description of a plane
using two coordinates, as published by Descartes in 1637.
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IA R" and C"

Complex Numbers

You should already be familiar with basic properties of the set R of real numbers.
Complex numbers were invented so that we can take square roots of negative
numbers. The idea is to assume we have a square root of —1, denoted by i, that
obeys the usual rules of arithmetic. Here are the formal definitions.

a

definition: complex numbers, C R

e A complex number is an ordered pair (a,b), where a,b € R, but we will
write this as a + bi.

e The set of all complex numbers is denoted by C:
C={a+bi:abeR}.
e Addition and multiplication on C are defined by

(a+bi)+ (c+di) = (a+c)+ (b+d)i,
(a + bi)(c +di) = (ac — bd) + (ad + be)i;

L here a,b,c,d € R. )

If a € R, we identify a + 0i with the real number a. Thus we think of R as a
subset of C. We usually write 0 + bi as just bi, and we usually write 0 + 17 as just i.
To motivate the definition of complex 4, symbol i was first used to denote
multiplication given above, pretend that /= by Leonhard Euler in 1777.
we knew that i = —1 and then use the
usual rules of arithmetic to derive the formula above for the product of two
complex numbers. Then use that formula to verify that we indeed have

2 =—1.

Do not memorize the formula for the product of two complex numbers—you
can always rederive it by recalling that i> = —1 and then using the usual rules of
arithmetic (as given by 1.3). The next example illustrates this procedure.

1.2 example: complex arithmetic

The product (2 + 3i) (4 + 5i) can be evaluated by applying the distributive and
commutative properties from 1.3:
(2+3i)(4+5i) =2- (4 +5i) + (3i)(4 + 5i)
=2-4+2-5i+3i-4+ (3i)(5i)
=8+ 10i + 12i — 15
= -7+ 22i.
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Our first result states that complex addition and complex multiplication have
the familiar properties that we expect.

1.3 properties of complex arithmetic

commutativity
a+pB=p+anandaf = Paforalla, g € C.

associativity
(@+B)+A=a+(B+A)and (¢f)A = a(BA) forall o, 5, A € C.

identities
A+0=Aand A1 = Aforall A € C.

additive inverse
For every & € C, there exists a unique § € C such thataw + = 0.

multiplicative inverse
For every « € C with o # 0, there exists a unique 8 € C such that a = 1.

distributive property
L Ao+ p) =Aa+ ABforall A, e, 5 € C.

J

The properties above are proved using the familiar properties of real numbers
and the definitions of complex addition and multiplication. The next example
shows how commutativity of complex multiplication is proved. Proofs of the
other properties above are left as exercises.

1.4 example: commutativity of complex multiplication
To show that a = Bu for all o, f € C, suppose
a=a+bi and B=c+di,

where a,b,c,d € R. Then the definition of multiplication of complex numbers
shows that

af = (a+ bi)(c+ di)
= (ac — bd) + (ad + bc)i

and

B = (c +di)(a + bi)
= (ca — db) + (cb + da)i.

The equations above and the commutativity of multiplication and addition of real
numbers show that a8 = fa.
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Next, we define the additive and multiplicative inverses of complex numbers,
and then use those inverses to define subtraction and division operations with
complex numbers.

e

~

.5 definition: —a, subtraction, 1/«, division

Suppose a, € C.

e Let —a denote the additive inverse of «. Thus —a is the unique complex
number such that
a+ (—a) =0.

e Subtraction on C is defined by
B—a=p+(—a).

e Fora # 0, let1/a and % denote the multiplicative inverse of . Thus 1/« is
the unique complex number such that

a(l/a) = 1.

e For o # 0, division by « is defined by

S B/a = p(/x). )

So that we can conveniently make definitions and prove theorems that apply
to both real and complex numbers, we adopt the following notation.

ﬂ.e notation: F \

tfhroughout this book, F stands for either R or C. J

Thus if we prove a theorem involving
F, we will know that it holds when F is
replaced with R and when F is replaced
with C.

Elements of F are called scalars. The word “scalar” (which is just a fancy
word for “number”) is often used when we want to emphasize that an object is a
number, as opposed to a vector (vectors will be defined soon).

For « € F and m a positive integer, we define «” to denote the product of «
with itself m times:

The letter F is used because R and C
are examples of what are called fields.

" = e
——
m times

This definition implies that
(@™ =a™ and (af)" = a™p™

for all «, B € F and all positive integers m, n.
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Lists

Before defining R and C”, we look at two important examples.

| 1.7 example: R? and R®

e The set R2 which you can think of as a plane, is the set of all ordered pairs of
real numbers:
R? = {(x,y) : x,y € R}.

e The set R® which you can think of as ordinary space, is the set of all ordered
triples of real numbers:

R® = {(x,y,2) : x,y,z € R},

To generalize R? and R? to higher dimensions, we first need to discuss the
concept of lists.

e

~

.8 definition: list, length

e Suppose 7 is a nonnegative integer. A list of length n is an ordered collec-
tion of n elements (which might be numbers, other lists, or more abstract
objects).

e Two lists are equal if and only if they have the same length and the same
\_ elements in the same order. )

Lists are often written as elements
separated by commas and surrounded by
parentheses. Thus a list of length two is
an ordered pair that might be written as (a, b). A list of length three is an ordered
triple that might be written as (x,y, z). A list of length n might look like this:

Many mathematicians call a list of
length n an n-tuple.

(215405 2y).

Sometimes we will use the word list without specifying its length. Remember,
however, that by definition each list has a finite length that is a nonnegative integer.
Thus an object that looks like (x;, x5, ... ), which might be said to have infinite
length, is not a list.

A list of length 0 looks like this: (). We consider such an object to be a list
so that some of our theorems will not have trivial exceptions.

Lists differ from sets in two ways: in lists, order matters and repetitions have
meaning; in sets, order and repetitions are irrelevant.

1.9 example: lists versus sets |
e The lists (3,5) and (5, 3) are not equal, but the sets {3, 5} and {5, 3} are equal.

e The lists (4,4) and (4,4, 4) are not equal (they do not have the same length),
although the sets {4, 4} and {4, 4, 4} both equal the set {4}.
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To define the higher-dimensional analogues of R? and R we will simply replace
R with F (which equals R or C) and replace the 2 or 3 with an arbitrary positive
integer.

(1.10 notation: n )
KFix a positive integer n for the rest of this chapter. )
(1.11 definition: F”, coordinate )

F" is the set of all lists of length n of elements of F:
F' = {(xq,...,x,) tx, € Ffork =1,...,n}.

For (x4, ....,x,) € F*and k € {1, ..., n}, we say that x, is the k™ coordinate of

k(xl,...,xn). )

If F = R and n equals 2 or 3, then the definition above of F” agrees with our
previous notions of R? and R®

| 1.12 example: C* |

C* is the set of all lists of four complex numbers:

C* = {(21,29,23,24) * 21,29, 23,24 € C}.

If n > 4, we cannot visualize R" as Read Flatland: A Romance of Many
a physical object. Similarly, C' can be Dimensions, by Edwin A. Abbott, for
thought of as a plane, but for n > 2, the 4y amusing account of how R? would
human brain cannot provide a full image  pe perceived by creatures living in R2
of C". However, even if n is large, we  This novel, published in 1884, may
can perform algebraic manipulations in  help you imagine a physical space of
F" as easily as in R? or R® For example,  four or more dimensions.
addition in F" is defined as follows.

(1.13 definition: addition in F"

Addition in F" is defined by adding corresponding coordinates:

(X150 X)) + (Y15 s V) = (X7 +Yp, 0, X +Y).

Often the mathematics of F” becomes cleaner if we use a single letter to denote
a list of n numbers, without explicitly writing the coordinates. For example, the
next result is stated with x and y in F” even though the proof requires the more
cumbersome notation of (xy,...,x,)) and (yy, ..., ¥,,).
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ﬁj 4 commutativity of addition in F"

NN

kIfx,yeF",thenx+y=y+x.

Proof  Suppose x = (xq,...,x,) € F"andy = (y4,....y,) € F". Then
X4+Y = (X X)) + (Yo oo Y)
= (X1 + Yy ees Xy + UYyy)
= (Y1 + X150 Yy + )
= Y1 oor Yp) + (X1 ees Xp)
=y +Xx,

where the second and fourth equalities above hold because of the definition of
addition in F” and the third equality holds because of the usual commutativity of
addition in F.

If a single letter is used to denote an 7y, symbol
element of F”, then the same letter with
appropriate subscripts is often used when
coordinates must be displayed. For example, if x € F” then letting x equal
(x1,...,x,) is good notation, as shown in the proof above. Even better, work with
just x and avoid explicit coordinates when possible.

means “end of proof .

ﬁj 5 notation: 0

Let 0 denote the list of length n whose coordinates are all O:

0=¢(0,...,0).

Here we are using the symbol 0 in two different ways—on the left side of the
equation above, the symbol 0 denotes a list of length 7, which is an element of F”,
whereas on the right side, each 0 denotes a number. This potentially confusing
practice actually causes no problems because the context should always make
clear which 0 is intended.

1.16 example: context determines which 0 is intended

Consider the statement that 0 is an additive identity for F":
x+0=x forallxeF"

Here the 0 above is the list defined in 1.15, not the number 0, because we have
not defined the sum of an element of F” (namely, x) and the number 0.
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A picture can aid our intuition. We will
draw pictures in R? because we can sketch (a,b)
this space on two-dimensional surfaces v
such as paper and computer screens. A
typical element of R? is a point v = (a,b).
Sometimes we think of v not as a point !
but as an arrow starting at the origin and ~ Elements of R? can be thought of
ending at (a, b), as shown here. When we as points or as vectors.
think of an element of R? as an arrow, we
refer to it as a vector.

When we think of vectors in R? as arrows, we
can move an arrow parallel to itself (not changing ° -
its length or direction) and still think of it as the ¢
same vector. With that viewpoint, you will often
gain better understanding by dispensing with the
coordinate axes and the explicit coordinates and A vector.
just thinking of the vector, as shown in the figure here. The two arrows shown
here have the same length and same direction, so we think of them as the same
vector.

. . 2
Whenever we use pictures in R” or Mathematical models of the economy

use the somewhat vague language of ... have thousands of variables, say
points and vectors, remember that these v \which means that we must

are just aids to our understanding, not sub-  york in R, Such a space cannot be
stitutes for the actual mathematics that  dealr with geometrically. However, the
we will develop. Although we cannot  algebraic approach works well. Thus
draw good pictures in high-dimensional  our subject is called linear algebra.
spaces, the elements of these spaces are

as rigorously defined as elements of R2

For example, (2, -3,17, m, \/5) is an element of R> and we may casually
refer to it as a point in R® or a vector in R® without worrying about whether the
geometry of R® has any physical meaning.

Recall that we defined the sum of two elements of F” to be the element of F"*
obtained by adding corresponding coordinates; see 1.13. As we will now see,
addition has a simple geometric interpretation in the special case of R2

Suppose we have two vectors u and v in R? v
that we want to add. Move the vector v parallel

to itself so that its initial point coincides with the u

end point of the vector u, as shown here. The Tt

sum u + v then equals the vector whose initial

point equals the initial point of u and whose end

point equals the end point of the vector v, as The sum of two vectors.

shown here.
In the next definition, the 0 on the right side of the displayed equation is the
list0 € F".
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ﬂl.17 definition: additive inverse in F", —x )

For x € F”, the additive inverse of x, denoted by —x, is the vector —x € F"
such that
x+ (=x) =0.

Thus if x = (xq, ..., x,,), then —x = (—xq, ..., —x,,).

\_

The additive inverse of a vector in R? is the . '
vector with the same length but pointing in the /
opposite direction. The figure here illustrates -
this way of thinking about the additive inverse
in RZ As you can see, the vector labeled —x has
the same length as the vector labeled x but points A vector and its additive inverse.
in the opposite direction.

Having dealt with addition in F”, we now turn to multiplication. We could
define a multiplication in F” in a similar fashion, starting with two elements of
F" and getting another element of F* by multiplying corresponding coordinates.
Experience shows that this definition is not useful for our purposes. Another
type of multiplication, called scalar multiplication, will be central to our subject.

Specifically, we need to define what it means to multiply an element of F” by an
element of F.

G.18 definition: scalar multiplication in F" N

The product of a number A and a vector in F” is computed by multiplying
each coordinate of the vector by A:

AXqy o x,) = (Axq, oo AX,)S

here A € F and (x4, ...,x,,) € F".

N J

Scalar multiplication in F" multiplies

Scalar multiplication has a nice geo-
metric interpretation in R% If A > 0and  y,0pmer 4 scalar and a vector. getting
x € R? then Ax is the vector that points g vector, In contrast, the dot product in
in the same direction as x and whose  R2 or R® multiplies together two vec-
length is A times the length of x. In other  tors and gets a scalar. Generalizations
words, to get Ax, we shrink or stretch x  of the dot product will become impor-
by a factor of A, depending on whether  tant in Chapter 6.
A<lorA>1.

If A < 0and x € R2 then Ax is the
vector that points in the direction opposite
to that of x and whose length is |A] times
the length of x, as shown here. %x /4

Scalar multiplication.
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Digression on Fields

A field is a set containing at least two distinct elements called O and 1, along with
operations of addition and multiplication satisfying all properties listed in 1.3.
Thus R and C are fields, as is the set of rational numbers along with the usual
operations of addition and multiplication. Another example of a field is the set
{0, 1} with the usual operations of addition and multiplication except that 1 + 1 is
defined to equal O.

In this book we will not deal with fields other than R and C. However, many
of the definitions, theorems, and proofs in linear algebra that work for the fields
R and C also work without change for arbitrary fields. If you prefer to do so,
throughout much of this book (except for Chapters 6 and 7, which deal with inner
product spaces) you can think of F as denoting an arbitrary field instead of R
or C. For results (except in the inner product chapters) that have as a hypothesis
that F is C, you can probably replace that hypothesis with the hypothesis that F
is an algebraically closed field, which means that every nonconstant polynomial
with coefficients in F has a zero. A few results, such as Exercise 13 in Section
1C, require the hypothesis on F that 1 + 1 # 0.

Exercises 1A

1 Showthata + 5 =p+aforalla,peC.

2 Showthat (w+pB)+A=a+ (B+A)foralla,B,A € C.
3 Show that (¢f)A = a(BA) foralla, B, A € C.
4 Showthat A(e + ) = Aa + ABforall A,a,f € C.
5 Show that for every « € C, there exists a unique § € C such thata + 8 = 0.
6 Show that for every &« € C with & # 0, there exists a unique f € C such
that #f = 1.
7  Show that
—1+/3i
2

is a cube root of 1 (meaning that its cube equals 1).
8 Find two distinct square roots of i.
9 Find x € R* such that
(4,-3,1,7) +2x = (5,9, -6, 8).
10 Explain why there does not exist A € C such that

A2 —=3i,5+4i,—6 + 7i) = (12 — 5i,7 + 22i,-32 — 9i).
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Show that (x + y) + z = x + (y + z) forall x,y,z € F".

Show that (ab)x = a(bx) for all x € F" and all a,b € F.

Show that 1x = x for all x € F".

Show that A(x +y) = Ax + Ay forall A € F and all x,y € F".

Show that (a + b)x = ax + bx for alla,b € F and all x € F.

11

“Can you do addition?” the White Queen asked. “What’s one and one and one
and one and one and one and one and one and one and one?”
“I don’t know,” said Alice. “I lost count.”

—Through the Looking Glass, Lewis Carroll
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1B Definition of Vector Space

The motivation for the definition of a vector space comes from properties of
addition and scalar multiplication in F": Addition is commutative, associative,
and has an identity. Every element has an additive inverse. Scalar multiplication
is associative. Scalar multiplication by 1 acts as expected. Addition and scalar
multiplication are connected by distributive properties.

We will define a vector space to be a set V with an addition and a scalar
multiplication on V that satisfy the properties in the paragraph above.

F .19 definition: addition, scalar multiplication

e An addition on a set V is a function that assigns an element u + v € V
to each pair of elements u,v € V.

o A scalar multiplication on a set V is a function that assigns an element
Av e Vitoeach A € Fandeachv € V.

Now we are ready to give the formal definition of a vector space.

K1 .20 definition: vector space A

A vector space is a set V along with an addition on V and a scalar multiplication
on V such that the following properties hold.

commutativity
u+v=v+uforallu,vo V.

associativity
(U+9)+w=u+ (v+w) and (ab)v = a(bv) for all u, v, w € V and for all
a,beF.

additive identity
There exists an element 0 € V suchthatv + 0 = vforallv € V.

additive inverse
For every v € V, there exists w € V such that v + w = 0.

multiplicative identity
lv=vforallv e V.

distributive properties
L a(u+9v) =au+avand (a+b)v =av+bvforalla,b € Fandall u,v € V.

&

The following geometric language sometimes aids our intuition.

F .21 definition: vector, point w

@lements of a vector space are called vectors or points.
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The scalar multiplication in a vector space depends on F. Thus when we need
to be precise, we will say that V is a vector space over F instead of saying simply
that V is a vector space. For example, R" is a vector space over R, and C" is a
vector space over C.

(1.22 definition: real vector space, complex vector space W

e A vector space over R is called a real vector space.

e A vector space over C is called a complex vector space.

Usually the choice of F is either clear from the context or irrelevant. Thus we
often assume that F is lurking in the background without specifically mentioning it.
With the usual operations of addition
and scalar multiplication, F” is a vector
space over F, as you should verify. The
example of F" motivated our definition of vector space.

The simplest vector space is {0}, which
contains only one point.

1.23 example: F~

F* is defined to be the set of all sequences of elements of F:
F* = {(x1,%,...) tx, eFfork =1,2,...}.
Addition and scalar multiplication on F* are defined as expected:

(X1, %0, ) + Y1, Y5 een ) = (X + Y1, X0 + Yo, .n),
)L(xl,X2, ...) = ()lxl,)LxZ,... ).

With these definitions, F* becomes a vector space over F, as you should verify.
The additive identity in this vector space is the sequence of all 0’s.

Our next example of a vector space involves a set of functions.

s

1.24 notation: FS

e If Sis a set, then FS denotes the set of functions from S to F.
e For f,¢ € FS the sum f+ ¢ € F° is the function defined by
(f+8)(x) = f(x) +g(x)
for all x € S.

e For A € Fand f € FS, the product Af € F® is the function defined by
Af)(x) = Af(x)

_ for all x € S. )
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As an example of the notation above, if S is the interval [0, 1] and F = R, then
R[%1 {5 the set of real-valued functions on the interval [0, 1].
You should verify all three bullet points in the next example.

1.25 example: F° is a vector space

e If S is a nonempty set, then FS (with the operations of addition and scalar
multiplication as defined above) is a vector space over F.

e The additive identity of F° is the function 0 : S — F defined by
0(x) =0

forallx € S.
e For f € F5 the additive inverse of fis the function —f: S — F defined by

(=H)(x) =—fx)

forall x € S.

The vector space F" is a special case
of the vector space F° because each e el e o 0, 1), e
(x1, .., x,) € F" can be thought of as lists. In general, a vector space is an
a function x from the set {1,2,...,n} to F  pc0 entity whose elements might
by writing x (k) instead of x; for the k™ 1, lists, functions, or weird objects.
coordinate of (x4, ..., x,,). In other words,
we can think of F* as F':2-~"), Similarly, we can think of F* as F{1:2:+},

Soon we will see further examples of vector spaces, but first we need to develop
some of the elementary properties of vector spaces.

The definition of a vector space requires it to have an additive identity. The
next result states that this identity is unique.

The elements of the vector space R1%1)

(1 .26 unique additive identity W

kA vector space has a unique additive identity. J

Proof  Suppose 0 and 0’ are both additive identities for some vector space V.
Then
00=0+0=0+0 =0,

where the first equality holds because 0 is an additive identity, the second equality
comes from commutativity, and the third equality holds because 0 is an additive
identity. Thus 0" = 0, proving that V has only one additive identity.

Each element v in a vector space has an additive inverse, an element w in the
vector space such that v + w = 0. The next result shows that each element in a
vector space has only one additive inverse.
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ﬁ .27 unique additive inverse w

kEvery element in a vector space has a unique additive inverse. J

Proof  Suppose V is a vector space. Let v € V. Suppose w and w’ are additive
inverses of v. Then

w=w+0=w+@+w)=(w+v)+w =0+w =w.

Thus w = w', as desired.

Because additive inverses are unique, the following notation now makes sense.

(1.28 notation: —v, w — v w

Let v,w € V. Then

e —v denotes the additive inverse of v;

e w — v is defined to be w + (—0v).

Almost all results in this book involve some vector space. To avoid having to
restate frequently that V is a vector space, we now make the necessary declaration
once and for all.

F .29 notation: V w

kFor the rest of this book, V denotes a vector space over F. J

In the next result, O denotes a scalar (the number 0 € F) on the left side of the
equation and a vector (the additive identity of V) on the right side of the equation.

ﬂ .30 the number 0 times a vector w

k()v = Qforeveryov € V. J

Proof For v € V, we have

The result in 1.30 involves the additive
identity of V and scalar multiplication.
The only part of the definition of a vec-
Adding the additive inverse of 0v to both  for space that connects vector addition
sides of the equation above gives 0 = 0o, and scalar multiplication is the dis-

0v =0+ 0)v =00+ 0v.

as desired. tributive property. Thus the distribu-
tive property must be used in the proof
In the next result, 0 denotes the addi- of 1.30.

tive identity of V. Although their proofs

are similar, 1.30 and 1.31 are not identical. More precisely, 1.30 states that the
product of the scalar 0 and any vector equals the vector 0, whereas 1.31 states that
the product of any scalar and the vector 0 equals the vector 0.
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ﬁ .31 a number times the vector 0

NN

QO = 0 foreverya € F.

Proof Fora € F, we have
a0 = a0+ 0) = a0 + a0.

Adding the additive inverse of a0 to both sides of the equation above gives 0 = a0,
as desired.

Now we show that if an element of V is multiplied by the scalar —1, then the
result is the additive inverse of the element of V.

(1 .32 the number —1 times a vector w
k(—l)v = —vforeveryv € V. J

Proof Forv € V, we have
v+ (-Hov=1v+ (-o=(1+ (=1))v =00 =0.

This equation says that (—1)v, when added to v, gives 0. Thus (—1)v is the
additive inverse of v, as desired.

Exercises 1B

1 Prove that —(—v) = v forevery v € V.
2 Supposea € F,v € V, and av = 0. Prove thata = 0 or v = 0.

3 Suppose v,w € V. Explain why there exists a unique x € V such that
v+ 3x=w.

4 The empty set is not a vector space. The empty set fails to satisfy only one
of the requirements listed in the definition of a vector space (1.20). Which
one?

5 Show that in the definition of a vector space (1.20), the additive inverse
condition can be replaced with the condition that

Ov =0forallv € V.
Here the 0 on the left side is the number 0, and the O on the right side is the
additive identity of V.

The phrase a “condition can be replaced” in a definition means that the
collection of objects satisfying the definition is unchanged if the original
condition is replaced with the new condition.
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Let co and —co denote two distinct objects, neither of which is in R. Define
an addition and scalar multiplication on R U {co, —co} as you could guess
from the notation. Specifically, the sum and product of two real numbers is
as usual, and for t € R define

—oo ift <0, oo ift <0,
too =40 ift =0, t(—o0) =10 ift =0,
oo ift >0, —oo ift >0,

and

t+o00o=0c0+t=00+ 00 = o0,
E+ (—00) = (—00) +t = (—00) + (—o0) = —cx,
00 4+ (—o0) = (—o0) + 00 = 0.

With these operations of addition and scalar multiplication, is R U {oc, —o0}
a vector space over R? Explain.

Suppose S is a nonempty set. Let V° denote the set of functions from S to V.
Define a natural addition and scalar multiplication on V¥, and show that V°
is a vector space with these definitions.

Suppose V is a real vector space.

e The complexification of V, denoted by V-, equals Vx V. An element of
V¢ is an ordered pair (u, v), where u, v € V, but we write this as u + iv.

e Addition on V. is defined by
(g +1iv1) + (Uy +105) = (Ug + Uyp) +1(V] + Vy)
for all uy,vq,1u,,0, € V.
e Complex scalar multiplication on V(- is defined by
(a + bi)(u + iv) = (au — bv) + i(av + bu)
foralla,b € Rand all u,v € V.

Prove that with the definitions of addition and scalar multiplication as above,
V¢ is a complex vector space.
Think of V as a subset of V. by identifying u € V with u+i0. The construc-

tion of Vc from V can then be thought of as generalizing the construction
of C" from R".
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1C Subspaces

By considering subspaces, we can greatly expand our examples of vector spaces.

F .33 definition: subspace W

A subset U of V is called a subspace of V if U is also a vector space with the
same additive identity, addition, and scalar multiplication as on V.

The next result gives the easiest way ¢, people use the terminology
to check whether a subset of a vector  yiear subspace, which means the

space is a subspace. same as subspace.

1.34 conditions for a subspace

A subset U of V is a subspace of V if and only if U satisfies the following
three conditions.

additive identity
0eU.

closed under addition
u,w € Uimplies u + w € U.

closed under scalar multiplication
a € F and u € U implies au € U.
N\ P J

Proof If U is a subspace of V. then U The additive identity condition above
satisfies the three conditions above by the .14 be replaced with the condition
definition of vector space. that U is nonempty (because then tak-

Conversely, suppose U satisfies the  jng 4 € U and multiplying it by 0
three conditions above. The first condi-  would imply that 0 € U). However,
tion ensures that the additive identity of  if a subset U of V is indeed a sub-
Visin U. The second condition ensures  space, then usually the quickest way
that addition makes sense on U. The third  to show that U is nonempty is to show
condition ensures that scalar multiplica-  that 0 € UL
tion makes sense on U.

If u € U, then —u [which equals (—1)u by 1.32] is also in U by the third
condition above. Hence every element of U has an additive inverse in U.

The other parts of the definition of a vector space, such as associativity and
commutativity, are automatically satisfied for U because they hold on the larger
space V. Thus U is a vector space and hence is a subspace of V.

The three conditions in the result above usually enable us to determine quickly
whether a given subset of V is a subspace of V. You should verify all assertions
in the next example.
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| 1.35 example: subspaces

(a) If b € F, then
{(xl,xz,X3,X4) S F4 : x3 = 5x4 + b}

is a subspace of F* if and only if b = 0.

(b) The set of continuous real-valued functions on the interval [0, 1] is a subspace
of RIO-1,

(c) The set of differentiable real-valued functions on R is a subspace of RX,

(d) The set of differentiable real-valued functions f on the interval (0, 3) such
that f'(2) = bis a subspace of R-% if and only if b = 0.

(e) The set of all sequences of complex numbers with limit O is a subspace of C*.

Veritying some of the items above 7y, ¢ {0} is the smallest subspace of
shows the linear structure underlying v ;4 v itself is the largest subspace
parts of calculus. For example, (b) above o v The empty set is not a subspace
requires the result that the sum of two  of V pecause a subspace must be a
continuous functions is continuous. As vector space and hence must contain at
another example, (d) above requires the  [least one element, namely, an additive
result that for a constant c, the derivative  identity.
of ¢fequals c times the derivative of f.

The subspaces of R? are precisely {0}, all lines in R? containing the origin,
and R% The subspaces of R are precisely {0}, all lines in R® containing the origin,
all planes in R® containing the origin, and R® To prove that all these objects are
indeed subspaces is straightforward—the hard part is to show that they are the
only subspaces of R? and R® That task will be easier after we introduce some
additional tools in the next chapter.

Sums of Subspaces

When dealing with vector spaces, we are The union of subspaces is rarely a sub-

usually interes.ted only in subspaces,. S space (see Exercise 12), which is why
opposed to arbitrary subsets. The notion e ysually work with sums rather than

of the sum of subspaces will be useful. o

e

~

.36  definition: sum of subspaces

Suppose V;, ..., V,, are subspaces of V. The sum of V,,...,V,,, denoted by
Vi + -+ +V,,, is the set of all possible sums of elements of V,, ..., V,,. More
precisely,

Vit +V, ={v++0,:v,€V,..,0, €V} )

N
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Let’s look at some examples of sums of subspaces.

1.37 example: a sum of subspaces of F>

Suppose U is the set of all elements of F* whose second and third coordinates
equal 0, and W is the set of all elements of F3 whose first and third coordinates
equal 0:

U={x00eF:xcF} and W= {0,y,0) ep :y € F}.

Then
U+ W = {(x,y,0) € F°:x,y € F},

as you should verity.

| 1.38 example: a sum of subspaces of F* |
Suppose
U={xxyy) eF:xyeF} and W= {(xxxy) €F:xyeF}

Using words rather than symbols, we could say that U is the set of elements
of F* whose first two coordinates equal each other and whose third and fourth
coordinates equal each other. Similarly, W is the set of elements of F* whose first
three coordinates equal each other.

To find a description of U + W, consider a typical element (a,a, b, b) of U and
a typical element (c, c,c,d) of W, where a,b,c,d € F. We have

(a,a,b,b) + (c,c,c,d) = (a+c,a+c,b+c,b+d),

which shows that every element of U + W has its first two coordinates equal to
each other. Thus

1.39 U+ WC{(x,x,y,z) € F*: x,y,z € F}.
To prove the inclusion in the other direction, suppose x,y,z € F. Then
(xs xsysz) = (xsxvyay) + (01 01 OsZ - y)s

where the first vector on the right is in U and the second vector on the right is
in W. Thus (x,x,y,z) € U+ W, showing that the inclusion 1.39 also holds in the
opposite direction. Hence

U+ W ={(x,xy,z2) € F4: x,y,z € F},

which shows that U + W is the set of elements of F* whose first two coordinates
equal each other.

The next result states that the sum of subspaces is a subspace, and is in fact the
smallest subspace containing all the summands (which means that every subspace
containing all the summands also contains the sum).
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ﬁ.40 sum of subspaces is the smallest containing subspace w

Suppose V,, ..., V,, are subspaces of V. Then V; + --- + V,, is the smallest
subspace of V containing V;, ..., V,,.

Proof The reader can verify that V; + --- + V,,, contains the additive identity 0
and is closed under addition and scalar multiplication. Thus 1.34 implies that
Vi + -+ V, is a subspace of V.

The subspaces Vj, ..., V,, are all con- Sums of subspaces in the theory of vec-
tained in V; +---+V,, (to see this, consider ;.. spaces are analogous 1o unions of
sums vy + -+ + v, where all except one  gypsers in set theory. Given two sub-
of the v;’s are 0). Conversely, every sub-  spaces of a vector space, the smallest
space of V containing V7, ..., V,, contains  subspace containing them is their sum.
Vi + -+ +V,, (because subspaces must  Analogously, given two subsets of a set,
contain all finite sums of their elements).  the smallest subset containing them is
Thus V; +-.-+V,, is the smallest subspace  their union.
of V containing V;, ..., V,,,.

Direct Sums

Suppose Vi, ..., V,, are subspaces of V. Every element of V; + --- + V,, can be
written in the form
v+ -+ 0,

where each v, € V,. Of special interest are cases in which each vector in
V, + -+ V,, can be represented in the form above in only one way. This situation
is so important that it gets a special name (direct sum) and a special symbol (&).

(1.41 R

definition: direct sum, @

Suppose Vi, ..., V,, are subspaces of V.

e The sum V; + --- + V, is called a direct sum if each element of V; + --- + V,,
can be written in only one way as a sum v; + --- + v,,,, where each v, € V.

o IfV, +..-+V,, isadirect sum, then V; & --- & V,, denotes V; + --- + V,,
Y with the @ notation serving as an indication that this is a direct sum. )

| 1.42 example: a direct sum of two subspaces |

Suppose U is the subspace of F* of those vectors whose last coordinate equals 0,
and W is the subspace of F° of those vectors whose first two coordinates equal 0:

U={(xy0 €F:xyeF} and W={(0,0,z) €F®:zeF}.
Then F? = U @ W, as you should verify.
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1.43 example: a direct sum of multiple subspaces |

Suppose V; is the subspace of F" of
those vectors whose coordinates are all
0, except possibly in the k™ slot; for example, V, = {(0,x,0,...,0) € F" : x € F}.
Then

To produce & in TgX, type \oplus.

F* = V1 @...@Vn’

as you should verify.

Sometimes nonexamples add to our understanding as much as examples.

1.44 example: a sum that is not a direct sum
Suppose
V, = {(x,y,0) € F° : x,y € F},
V, = {(0,0,z) € F? : z € F},
V;={0.y.y) EF :y EF}.
Then F® = Vi + V, + V; because every vector (x,Y,z) € F3 can be written as
(x,¥,2) = (x,,0) + (0,0,2) + (0,0,0),

where the first vector on the right side is in V;, the second vector is in V,, and the
third vector is in Vj.

However, F? does not equal the direct sum of V;, V,, V3, because the vector
(0,0,0) can be written in more than one way as a sum v; + v, + v5, with each
v, € V. Specifically, we have

(0,0,0) = (0,1,0) + (0,0,1) + (0,-1,-1)

and, of course,
(0,0,0) = (0,0,0) + (0,0,0) + (0,0,0),

where the first vector on the right side of each equation above is in V], the second
vector is in V,, and the third vector is in V5. Thus the sum V; + V, + V; isnot a
direct sum.

The definition of direct sum requires The symbol ®, which is a plus sign
every vector in the sum to have a unique ;e 4 circle, reminds us that we are
representation as an appropriate sum. dealing with a special type of sum of
The next result shows that when deciding  subspaces—each element in the direct
whether a sum of subspaces is a direct sum can be represented in only one way
sum, we only need to consider whether 0 as a sum of elements from the specified
can be uniquely written as an appropriate  subspaces.
sum.



Section 1C  Subspaces 23

ﬁ.45 condition for a direct sum w

Suppose V;, ..., V,, are subspaces of V. Then V; + --- + V, is a direct sum if
and only if the only way to write 0 as a sum v; + --- + v,,, where each v, € V,,
is by taking each v equal to 0.

Proof  First suppose V; + --- + V,, is a direct sum. Then the definition of direct
sum implies that the only way to write 0 as a sum v; +---+v,,, where each v, € V|,
is by taking each v equal to 0.

Now suppose that the only way to write 0 as a sum v; + --- + v,,,, where each
v, € V,, is by taking each v, equal to 0. To show that V; + --- + V,, is a direct
sum, letv € V; + -+ + V,,,. We can write

V=01 ++70,

for some v; € Vi,...,,v,, € V,,. To show that this representation is unique,
suppose we also have
V=Up+ et Uy,

where u; € Vi, ...,u,, € V,,. Subtracting these two equations, we have
0= (vy —uy) + -+ (v, —u,).
Because v; —uy € V4, ...,v,, — u,, € V,,, the equation above implies that each

v, — ug equals 0. Thus v, = uq,...,v,, = u,,, as desired.

The next result gives a simple con- 4, symbol — used below means
dition for testing whether a sum of two “if and only if ”; this symbol could also

subspaces is a direct sum. be read to mean “is equivalent to”.

(1.46 direct sum of two subspaces W

Suppose U and W are subspaces of V. Then

U+ Wisadirect sum < UNW = {0}.

Proof  First suppose that U+ W is adirect sum. If v € UNW, then 0 = v+ (—v),
where v € U and —v € W. By the unique representation of 0 as the sum of a
vector in U and a vector in W, we have v = 0. Thus U N W = {0}, completing
the proof in one direction.

To prove the other direction, now suppose U N W = {0}. To prove that U + W
is a direct sum, suppose u € U, w € W, and

0=u+w.

To complete the proof, we only need to show that u = w = 0 (by 1.45). The
equation above implies that u = —w € W. Thus u € UN W. Hence u = 0, which
by the equation above implies that w = 0, completing the proof.
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The result above deals only with

Chapter 1 Vector Spaces

Sums of subspaces are analogous to

the case of two subspaces. When ask-ion5 of subsets. Similarly, direct

ing about a possible direct sum with g, of subspaces are analogous to
more than two subspaces, it iS not  gisjoint unions of subsets. No two sub-
enough to test that each pair of the  spacesofavector space can be disjoint,
subspaces intersect only at 0. To see  because both contain 0. So disjoint-
this, consider Example 1.44. In that ness is replaced, at least in the case
nonexample of a direct sum, we have  of two subspaces, with the requirement
VinV,=V, NV, =V,NV;={0}. that the intersection equal {0}.

Exercises 1C

10

For each of the following subsets of F3, determine whether it is a subspace
of F3.

(@) {(x1,%x0,%3) € F3 1 x; +2x, + 3x3 = 0}

() {(x1,%p,x3) € F? : x; + 2x, + 3x53 = 4}

(©) {(x1,%p,x3) € F® 1 x1xpx5 = 0}

(d) {(x1,%0,%3) € F 1 x; = 5x3}

Verify all assertions about subspaces in Example 1.35.

Show that the set of differentiable real-valued functions f on the interval
(—4,4) such that f'(—1) = 3f(2) is a subspace of R‘=%%,

Suppose b € R. Show that the set of continuous real-valued functions f on
the interval [0,1] such that [, f = b is a subspace of R/®! if and only if
b=0.

Is R? a subspace of the complex vector space C2?

(@) Is {(a,b,c) € R® : a® = b3} a subspace of R3?
(b) Is {(a,b,c) € C° : a®> = b®} a subspace of C>?

Prove or give a counterexample: If U is a nonempty subset of R? such that
U is closed under addition and under taking additive inverses (meaning
—u € U whenever u € U), then U is a subspace of R%

Give an example of a nonempty subset U of R? such that U is closed under
scalar multiplication, but U is not a subspace of R2

A function f: R — R is called periodic if there exists a positive number p
such that f(x) = f(x + p) for all x € R. Is the set of periodic functions
from R to R a subspace of RR? Explain.

Suppose V; and V, are subspaces of V. Prove that the intersection V; NV,
is a subspace of V.
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Prove that the intersection of every collection of subspaces of V' is a subspace
of V.

Prove that the union of two subspaces of V is a subspace of V' if and only if
one of the subspaces is contained in the other.

Prove that the union of three subspaces of V is a subspace of V if and only
if one of the subspaces contains the other two.

This exercise is surprisingly harder than Exercise 12, possibly because this
exercise is not true if we replace F with a field containing only two elements.

Suppose
U={(x,—x,2x) eFP:x€F} and W = {(x,x2x) €F:xecF}

Describe U + W using symbols, and also give a description of U + W that
uses no symbols.

Suppose U is a subspace of V. Whatis U + U?

Is the operation of addition on the subspaces of V commutative? In other
words, if U and W are subspaces of V,is U+ W = W + U?

Is the operation of addition on the subspaces of V associative? In other
words, if V;, V,, V5 are subspaces of V is

Does the operation of addition on the subspaces of V have an additive
identity? Which subspaces have additive inverses?

Prove or give a counterexample: If V;, V,, U are subspaces of V such that
then V; = V,.

Suppose
U={@xyy €F :xyeF}

Find a subspace W of F* such that F* = U & W.

Suppose
U={xyx+yx—y2x) € FP:xyeF}

Find a subspace W of F® such that F> = U @ W.

Suppose
U={xyx+yx—y2x) € P:xyeF}

Find three subspaces W;, W,, W5 of F°, none of which equals {0}, such that
FP=UsW oW,aeW,.
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Prove or give a counterexample: If V;, V,, U are subspaces of V such that
V=VielU and V=V,el,

Hint: When trying to discover whether a conjecture in linear algebra is true
or false, it is often useful to start by experimenting in F>

A function f: R — R is called even if
f(=x) = f(x)

for all x € R. A function f: R — R is called odd if
f(=x) = —f(x)

for all x € R. Let V, denote the set of real-valued even functions on R
and let V, denote the set of real-valued odd functions on R. Show that
RR=V. @V,
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